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Abstract
Optimization of Josephson oscillators requires a quantitative understanding of their microwave properties. A Josephson junction
has a geometry similar to a microstrip patch antenna. However, it is biased by a dc current distributed over the whole area of the
junction. The oscillating electric field is generated internally via the ac-Josephson effect. In this work, I present a distributed, active
patch antenna model of a Josephson oscillator. It takes into account the internal Josephson electrodynamics and allows for the deter-
mination of the effective input resistance, which couples the Josephson current to cavity modes in the transmission line formed by
the junction. The model provides full characterization of Josephson oscillators and explains the origin of the low radiative power
efficiency. Finally, I discuss the design of an optimized Josephson patch oscillator capable of reaching high efficiency and radia-
tion power for emission into free space.
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Introduction
A flux-flow oscillator (FFO) is the most extensively studied
Josephson source of high-frequency electromagnetic waves
(EMW) [1-12]. A FFO was used in the first direct demonstra-
tion of Josephson emission by Yanson et al., back in 1965
[13,14]. State of the art FFOs, developed by Koshelets and
co-workers show a remarkable performance in terms of
tunability and linewidth [6,9,12]. However, they emit very little
power into free space [11,13,15,16]. The low radiation power
efficiency, that is, the ratio of radiated to dissipated power, is
commonly attributed to a large impedance mismatch between a

Josephson junction (JJ) and free space [10,16,17]. But there is
no consensus about the value of the junction impedance: Is it
very small [16] or, in contrast, very large [10]? At present, there
is no clear understanding about what causes the impedance
mismatch and which geometrical parameters should be changed
for solving the problem. The discovery of significant terahertz
emission from stacked intrinsic JJs in layered high-Tc cuprates
[18-27] further emphasizes the necessity of a quantitative
understanding of microwave emission from Josephson oscilla-
tors.
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Figure 1: (a) A sketch of the Josephson flux-flow oscillator. It is based on a sandwich-type junction with two superconducting electrodes (light blue)
separated by a dielectric interlayer (yellow). Red ovals represent Josephson vortices that are driven by the Lorentz force, FL, exerted by the dc bias
current, Ib. From the outside, the junction has a patch antenna geometry. However, inside it is driven by a distributed dc current, and the oscillating
voltage is generated internally by a combination of the ac-Josephson effect and the flux-flow phenomenon. (b) Clarification of spatial and angular co-
ordinates. (c) An equivalent circuit of the Josephson junction. The ac-Josephson effect provides a source of the high-frequency alternating current
with the fixed amplitude of current density, Jc0. The oscillating voltage at the junction edges is generated by means of the input junction impedance,
Zin, and is distributed between the internal dissipative resistance, Rdis, and the external radiative impedence, Zrad, connected by the transmission line
impedance ZTL.

Figure 1a shows a sketch of a typical FFO. It is based on a
sandwich-type (overlap) JJ with the length, a ≫ λJ, much larger
than the Josephson penetration depth, and both in-plane sizes
much larger than the thickness of the junction interface,
d ≪ b ≪ a. The in-plane magnetic field, Hy, introduces a chain
of Josephson vortices (fluxons) in the JJ. The dc bias current, Ib,
exerts a Lorentz force, FL, and causes a unidirectional fluxon
motion. Upon collision with the junction edge, the fluxons anni-
hilate. The released energy produces an EMW pulse, which is
partially emitted but mostly reflected backwards in the JJ. Prop-
agation and reflection of FFO pulses in the transmission line
(TL) formed by the JJ leads to the formation of standing waves.
The corresponding cavity mode resonances are manifested by
Fiske steps in the current–voltage (I–V) characteristics [16,28-
32]. FFOs exhibit sharp emission maxima at the Fiske steps
[9,12,13]. Such a conditional emission indicates that several ad-
ditional and equally important phenomena (apart from the
ac-Josephson effect) are involved in FFO operation [10]. The
excitation of high-quality factor, Q ≫ 1, cavity modes is one of
them.

Geometry is playing a decisive role for characteristics of micro-
wave devices. Although calculations of radiative impedances of
JJs do exist [33], they were not made for the FFO geometry.
From the outside, the overlap JJ looks like a well-known
microstrip patch antenna [34-36]. The difference, however, is
inside. A standard patch antenna has a point-like feed-in port,
while in a JJ the bias current is distributed over the whole area
of the JJ. Furthermore, the oscillating component of the current
is actively generated inside the JJ by means of the ac-Josephson
effect and the flux-flow phenomenon. Therefore, a JJ can be
considered as an actively pumped patch antenna with a distri-
buted feed-in current.

In this work, I present a distributed, active patch antenna model
of a Josephson oscillator. It expands the TL model of a patch
antenna [36], taking into account the spatial distribution of the
input current density in a JJ, described by the perturbed sine-
Gordon equation. In the presence of a magnetic field and
fluxons, the oscillating current is distributed nonuniformly
within the junction. This nonuniformity is essential for the FFO
operation. It determines the variable input resistance, which
enables the coupling of the Josephson current to cavity mode
resonances in the junction. The presented model allows for the
application of many of patch antenna results and facilitates full
characterization of Josephson oscillators, including the emis-
sion power, directivity, and power efficiency. The model
explains the origin of the low power efficiency for emission in
free space and clarifies which parameters can be changed to
improve the FFO characteristics. Finally, I discuss the design of
a Josephson patch oscillator that can reach high power for emis-
sion in free space with the optimal power efficiency of approx.
50%.

Results
The spatial-temporal distribution of voltage in a JJ is described
by the equation (see chapter 9 in [31]):

(1)

where c0 is the (Swihart) velocity of EMWs in the TL formed
by the JJ and L□ is the inductance of JJ per square. Jz is the cur-
rent density through the JJ, which has Cooper pair and quasipar-
ticle (QP) components,
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(2)

Here, Jc0 is the Josephson critical current density, η is the
Josephson phase difference, and rQP = RQPab is the QP resis-
tance per unit area.

Active patch antenna model of a junction
Equation 1 is the equation for an active TL [37] with a distribut-
ed feed-in current density Jz. Therefore, a JJ has many similari-
ties with the microstrip patch antenna. However, there are three
main differences:

(i) The feed-in geometry. A patch antenna has a point-like feed-
in port, through which the oscillating current is applied [34-36].
The FFO is biased by a dc current distributed over the whole JJ
area.

(ii) The excitation scheme. A patch antenna is a linear oscil-
lator pumped by a harmonic signal. In contrast, a JJ is biased by
a dc-current and the oscillatory component is generated inside
the JJ via the ac-Josephson effect and the flux-flow phenome-
non.

(iii) The slow propagation speed of EMWs inside the JJ, c0 ≪ c.
This is caused by a large kinetic inductance of superconducting
electrodes. For Nb-based JJs, c/c0 ≈ 40 (see the estimation in
section Discussion). For atomic-scale intrinsic JJs in layered
cuprates, c0 can be almost 1000 times slower than c [32].
Because of that, the wavelength inside the JJ is much smaller
than in free space, λ ≪ λ0. Therefore, a JJ corresponds to a
patch antenna with an extraordinary large effective permittivity,

 = (c/c0)2.

The dynamics of a JJ is described by a nonlinear perturbed sine-
Gordon equation,

(3)

It follows from Equation 1 and Equation 2, taking into account
the ac-Josephson relation, V = (Φ0/2π)∂η/∂t. Equation 3 is
written in a dimensionless form with space,  = x/λJ, normal-
ized by λJ,and time,  = ωpt, by the Josephson plasma frequen-
cy, ωp. Here α is the QP damping factor, and  = Jb/Jc0 is the
normalized bias current density, which originates from the
∂2V/∂y2 term in Equation 1 [38]. In what follows, “tilde” will
indicate dimensionless variables,  = ω/ωp and  = λJk. The

definition of and the interconnection between different vari-
ables are clarified in the Appendix section.

Radiative resistance of a patch antenna
A rectangular patch antenna has two radiating slots, which cor-
respond to the left and right edges of the JJ in Figure 1a. The
slots can be considered as magnetic current lines (magnetic
dipoles) [39]. Radiation from the antenna is determined by the
radiative impedance, Zrad. For a patch with a very thin insu-
lator (as is the case for a tunnel JJ), the radiative admittance of
one slot, 1/Zrad1 = G1 + iB1, contains a large imaginary part B1,
caused by the large capacitance. However, at the cavity mode
resonance the imaginary contributions from the two slots cancel
out [34,36,39] and the radiative impedance becomes real.
Therefore, at the resonance the radiation power from one slot is

(4)

where |v(0,a)| is the amplitude of voltage oscillations at the slot
(x = 0,a) and G1 is the radiative conductance of the single slot.
Low-Tc JJs are operating at sub-terahertz frequencies, for which
the wavelength in free space is large, λ0 ≫ b ≫ d. In this limit
[36,39],

(5)

where Z0 =  ≃ 376.73 (Ω) is the impedance of free
space.

To calculate the total radiation power from both slots one has to
take into account the mutual radiative conductance, G12, and the
array factor AF [36]. G12 is originating from a cross product of
electric and magnetic fields generated by different slots. For
λ0 ≫ b ≫ d it is equal to [36,40]

(6)

Here, J0 is the zeroth-order Bessel function, k0 = 2π/λ0 is the
wave number in free space, and the angle Θ is defined in
Figure 1b. For the n-th cavity mode,

(7)
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the argument of J0 becomes (c0/c)πnsinΘ. Since c0 ≪ c, k0a is
small. Expanding in Equation 6, J0(x) ≃ 1 − x2/4 (for x ≪ 1), we
obtain:

(8)

It is seen that the mutual conductance for a JJ with thin elec-
trodes (slow c0) is not negligible and can be as big as the single-
slot conductance G1, Equation 5.

The array factor takes into account the interference of electro-
magnetic fields from the two slots in the far field. It depends on
the separation between the slots, a, the relative phase shift, β,
and the direction (φ,Θ). Since radiation from a patch antenna is
induced by magnetic current lines, it is more intuitive to
consider the interference of magnetic fields, H1 + H2 = AFH1.
For the geometry of Figure 1a and Figure 1b, it can be written
as [36,40]

(9)

Odd-number cavity modes have antisymmetric voltage oscilla-
tions but symmetric magnetic currents, β = 0. This leads to a
constructive interference with the maximum AF = 2 perpendic-
ular to the patch along the z-axis. For even modes its vice versa,
β = π, and a destructive interference leads to a node, AF = 0,
along the z-axis.

The total emission power is

(10)

where the plus/minus signs are for odd/even modes, respective-
ly. For equal amplitudes, |v(0)| = |v(a)|,

(11)

with the effective radiative resistance

(12)

Determination of voltage amplitudes
To calculate Prad, we need voltage amplitudes at the JJ edges.
Within the TL model of patch antennas, v(x) is obtained by de-
composition into a sum of cavity eigenmodes [34]. For JJs, a
similar approach is used for the analysis of Fiske steps [16,29-
31]. To separate dc and ac components, we write

(13)

Here, k = 2π(Φ/Φ0)/a is the phase gradient induced by the
external field, where Φ is the flux in the JJ. ω = 2πΦ0Vdc is the
angular Josephson frequency proportional to the dc voltage Vdc.
The last term, ϕ, represents the oscillatory component induced
by cavity modes and fluxons. This term generates the ac
voltage, which we aim to determine:

(14)

Small-amplitude, multimode analysis
In the small-amplitude limit, ϕ ≪ 1, a perturbation approach
can be used. A linear expansion of Equation 3 yields [16,29,31],

(15)

Here,  is the excess dc current with respect to the
ohmic QP line. It is caused by the second term on the right-hand
side, which enables nonlinear rectification of the Josephson cur-
rent. The excess dc current is defined as

(16)

The oscillatory part is described by the equation

(17)

A comparison with Equation 1 shows that this is the active TL
equation in which the supercurrent wave, sin(kx + ωt), acts as a
distributed (x,t)-dependent drive.
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To obtain ϕ, a decomposition into cavity eigenmodes is made
[15,16,29,31], similar to the TL analysis of patch antennas [34-
36]:

(18)

Note that Equation 18 does not include the dc term, n = 0,
which is accounted for in  instead, so that ϕ generates
solely ac voltage, as described by Equation 14. Substituting
Equation 18 in Equation 17 and taking into account the orthogo-
nality of eigenfunctions, one obtains

(19)

(20)

(21)

From Equation 14, voltage amplitudes at radiating slots are:

(22)

(23)

Excess current
Without geometrical resonances, the dc current, well above the
field-dependent critical current, I ≫ Ic(H), is determined by the
QP resistance, I = V/RQP. In dimensionless units, I/Ic0 = αV/Vp,
where Vp = Φ0ωp/2π is the voltage at plasma frequency. At
resonances, a partial rectification of the oscillating supercurrent
occurs, leading to the appearance of Fiske steps in the I–V
curves. The excess dc current, obtained from Equation 16, is
[16,29,31]

(24)

Figure 2: (a) Simulated current–voltage characteristics of a junction
with L = 5λJ, Φ/Φ0 = 5 and α = 0.1. Blue symbols represent the full
numeric solution of the sine-Gordon equation (up and down current
sweep). The red line represents the approximate (perturbative) analyt-
ic solution, I = V/RQP + ΔI. (b) Excess dc current, ΔI(V), at Fiske steps.
The thick red line represents the multimode analytic solution,
Equation 24. Thin blue, black, and olive lines show single-mode solu-
tions for n = 9, 10, and 11, respectively. Vertical grid lines in (a) and (b)
mark Fiske step voltages. Voltages are normalized by (a) the plasma
frequency voltage, Vp, and (b) the lowest Fiske step voltage, V1.

Figure 2a shows calculated I–V characteristics of a JJ with
a = 5λJ, α = 0.1 and at a magnetic field corresponding to
Φ = 5Φ0 in the JJ. Blue symbols represent the direct numerical
simulation of the sine-Gordon Equation 3 for up and down cur-
rent sweep. The red line shows the analytic solution with the
excess current given by Equation 24. The agreement between
exact (without linearization) numeric and (approximate) analyt-
ic solutions is quite good. It is seen that a series of Fiske steps
appear in the I–V. Vertical grid lines mark positions of cavity
mode resonances, ω/c0 = kn. Fiske steps appear at this condi-
tion because of the vanishing of  term in the denomi-
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nator of gn, Equation 19. The main step occurs at the double
resonance condition, ω/c0 = kn = k. It happens at n = 2Φ/Φ0 and
leads to the vanishing of (k − kn) in the denominators of
Equation 20 and Equation 21. The condition, ω/c0 = k, is re-
ferred to as the velocity matching because at this point the
velocity of the fluxon chain (or phase velocity of the current
wave in Equation 17) reaches c0 [16].

Single-mode analysis
Figure 2b shows the excess current, ΔI/Ic0 versus V, normalized
by the n = 1 Fiske step voltage, V1 = Φ0c0/2a. Such normali-
zation clearly shows that the main resonance occurs at
n = 2Φ/Φ0 = 10. The thick red line represents the full multi-
mode solution, Equation 24. Thin blue, black, and olive lines
represent a single eigenmode contribution for n = 9, 10, and 11,
respectively. A perfect coincidence with the red line indicates
that for underdamped JJs, α ≪ 1, it is sufficient to consider just
a single mode. This greatly simplifies the analysis.

For a resonance at mode n,

(25)

and

(26)

(27)

where

(28)

Large-amplitude case
The described above perturbative approach is valid only for
small amplitudes. Simulations in Figure 2a are made for an
underdamped JJ, α = 0.1. In this case the quality factor of high-
order cavity modes is large,

and |gn| is not small. Since ϕ appears within the sin η term in
Equation 3, the maximum possible amplitude of |gn| is π. This
reflects one of the key differences between FFO and patch
antenna. The patch antenna is a linear element in which the

voltage amplitude is directly proportional to the feed current. A
FFO is essentially nonlinear. The amplitude of Josephson phase
oscillations will not grow beyond |gn| = π. Instead, higher
harmonic generation will occur.

Full numerical simulations of the sine-Gordon equation
(Equation 3), shown by blue symbols in Figure 2a, reveal that
the amplitude of oscillations reach π at the end of the velocity-
matching step. This causes a premature switching out of the
resonance before reaching the resonant frequency. It is some-
what miraculous that the agreement with the perturbative solu-
tion (red line in Figure 2a) is so good. Apparently, it works
remarkably well far beyond the range of its formal applicability,
|gn| ≪ 1.

A general single-mode solution for an arbitrary amplitude was
obtained by Kulik [30]. The amplitude at the resonance, ,
is given by the first solution of the implicit equation [31],

(29)

where J0 is the zeroth-order Bessel function. This equation can
be easily solved numerically. It is also possible to obtain an ap-
proximate analytic solution by expanding J0(x) ≃ 1 − x2/4 for
small x. With such expansion, Equation 29 is reduced to a
quadratic equation with the solution

(30)

For overdamped JJs, α ≫ 1, it reduces to the small-amplitude
result of Equation 25, |gn| = . For underdamped JJs, it
qualitatively correctly predicts saturation of the amplitude for
α→0, although at a value of 4 instead of π. Thus, Equation 30
provides a simple and sufficiently good approximation for
a significantly broader range of damping parameters than
Equation 25.

Input resistance
For the practically most important velocity matching mode,
kn = k, from Equations 19–21 it follows, Bn = 1, Cn = 0, Fn = 1,
leading to a remarkably simple result,

(31)

This equation has a straightforward meaning illustrated by the
equivalent circuit in Figure 1c. A JJ is a source of a spatially
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distributed oscillating current, Jz = Jc0sin(ωt + kx), with a fixed
amplitude, Jc0, but spatially dependent phase, kx. It couples to
the cavity mode via some effective input impedance Zin. Zin
depends on ω, kn and k and is, in general, complex. However,
since the phase of the current wave is strongly varying along the
junction, it is hard to define the phase shift between current and
voltage. Therefore, in what follows, I will be talking about the
input resistance, Rin = |Zin|, defined via the relation

(32)

From Equation 26 it follows,

(33)

Figure 3a–c shows, respectively, Bn, Cn, and Rin/RQP = Fn
versus n for the case from Figure 2. Lines are obtained for con-
tinuous variation of n in Equation 20 and Equation 21, and
circles represent the actual cavity modes with integer n. From
Figure 3c, it is seen that Rin has a distinct maximum at the
velocity matching condition n = 2Φ/Φ0 = 10. At this point,

, the wave numbers of the cavity mode and the cur-
rent wave coincide, leading to a perfect coupling along the
whole length of the JJ. Therefore, Rin = RQP and v = Ic0RQP. For
other modes, kn ≠ k, the coupling with Josephson current oscil-
lations is much weaker. As seen from Figure 3c, it is oscillating
with n. For the particular case with integer Φ/Φ0, Rin vanishes
for all even modes. This leads to the absence of corresponding
Fiske steps in Figure 2a.

The coupling of a cavity mode to the current wave in the JJ
depends on magnetic field and flux in the JJ (via the parameter
k). This is illustrated in Figure 3d for Φ/Φ0 = 5 (olive line, the
same as in Figure 3c), 5.25 (blue), and 5.5 (red). Although the
oscillatory behavior of Fiske step amplitudes is well known
[16,29,31], the interpretation of such behavior in terms of the
input resistance makes a clear connection to the analysis of
patch antennas, for which Rin is one of the most important pa-
rameters. From this point of view, geometrical resonances with
large voltage amplitudes appear only for modes coupled to the
current source (Josephson oscillations) via a large input resis-
tance, Equation 32. As seen from Figure 3d, the best coupling
with maximum, Rin = RQP, occurs for the velocity-matching
step, n = 2Φ/Φ0. Modes with Rin = 0 are not coupled to
Josephson oscillations and, therefore, are not excited at all. In
particular, there is no coupling to any mode in the absence of an
applied field, Rin(H = 0) = 0. This is why Fiske steps do not
appear at zero field.

Figure 3: Panels (a) and (b) show mode-number dependence of coef-
ficients Bn and Cn, given by Equation 20 and Equation 21, for the case
from Figure 2 with Φ/Φ0 = 5. Panel (c) shows the corresponding oscil-
latory dependence of the input resistance, Equation 28 and
Equation 33. (d) Input resistance for Φ/Φ0 = 5 (olive), 5.25 (blue) and
5.5 (red). The large Rin enables good coupling of the cavity mode to
the Josephson current.

Inclusion of radiative losses in a cavity mode
analysis
Finally, in order to calculate radiative characteristics, we need
to take into consideration radiative losses. In the previous
section, only QP losses in a pure cavity eigenmode were consid-
ered. Yet, pure eigenmodes, En ∝ cos(knx), Hn ∝ sin(knx), do
not emit any radiation because they do not produce ac magnetic
fields at the edges Hn(0,L) = 0 [36]. Consequently, the Pointing
vector is zero. In other words, eigenmodes have infinite radia-
tive impedance, Zrad(0,L) = E(0,L)/H(0,L) = ∞. Therefore,
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despite large electric fields, the radiated power Prad ∝ E2/Zrad is
zero [10].

Radiative losses can be included using the equivalent circuit
sketched in Figure 1c. Voltage oscillations at the JJ edges are
produced by the oscillating supercurrent via the input resis-
tance, Equation 32. The generated electromagnetic power is dis-
tributed between internal losses, characterized by the dissipa-
tive resistance, Rdis, and radiative losses to free space, charac-
terized by the radiative resistance Rrad. They are connected by
the transmission line impedance,

(34)

Here Zsurf is the surface impedance of the electrodes,
GQP = 1/RQP is the quasiparticle conductance, L is the induc-
tance, and C is the capacitance of the JJ. The bars indicate that
the quantities are taken per unit length. For not very high
frequencies and temperatures, the surface resistance of Nb elec-
trodes is small (as will be discussed below). For tunnel JJs, GQP
is also small. In this case,

(35)

It is very small because b ≫ Λ ≫ d and can be neglected for all
practical cases. Therefore, in Figure 1c we may consider that
the dissipative and radiative resistances are connected in
parallel. Analysis of patch antennas [36] and numerical calcula-
tions for JJs with radiative boundary conditions [10] show that
radiative losses can be simply included in the cavity mode anal-
ysis by introducing the total quality factor, Qtot, of the cavity
mode with parallel dissipative and radiative channels,

(36)

Here, Qdis is associated with all possible dissipative losses, such
as QP resistance in the JJ as well as surface resistance in elec-
trodes and dielectric losses while Qrad represents radiative
losses,

(37)

Using definitions of α and Q, we can introduce a total damping
factor

(38)

where the total resistance is

(39)

Thus, to include radiative losses, α and RQP in the equations
above should be replaced by αtot and Rtot. For the n-th cavity
mode resonance we obtain,

(40)

For the most important velocity matching resonance from
Equation 31, we obtain

(41)

with Rrad and Rtot defined in Equation 12 and Equation 39.

Power efficiency
The total power dissipated in a JJ is given by the product of dc
voltage and dc current,

(42)

Here, the left factor is the dc voltage, and the right one is the
total dc current. It contains the QP current (first term) and the
rectified excess current, ΔI, (second term). The latter is written
using Equation 27 at the resonance condition . It is im-
portant to note that the nonlinear rectification occurs only inside
the JJ. Therefore, the damping parameter αdis within the JJ is
used for both terms. The first term in Equation 42 describes
dissipative dc losses, which generate only heat, Pheat = V2/2Rdis.
The second term in Equation 42 describes the total power con-
sumed by the cavity mode, Pcav = VΔI. Only this term is partici-
pating in radiation. From Equation 39 and Equation 40, we
obtain a well-known connection between the radiated power
and the power consumed solely by the cavity mode,

(43)
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As usual, the maximum emission power is achieved at the
matching condition Rrad = Rdis. In this case, exactly one half of
the cavity mode power is emitted and another half is dissipated.
This is typical for antennas [36] and is consistent with direct
simulations for JJs with radiative boundary conditions [10]. Yet,
the overall power efficiency is reduced by the “leakage” QP
current in Equation 42, which just produces heat. For the I–V
curves in Figure 2a, the ohmic QP current is more than twice ΔI
at the velocity matching step. Therefore, the total power effi-
ciency, Prad/Ptot, for such moderately underdamped JJ will not
exceed 50/3 ≃ 17%. Since the leakage current decreases with in-
creasing RQP, strongly underdamped JJs are necessary for
reaching a power efficiency of approx. 50%. This is the case for
Nb tunnel JJs [9] and for high-quality intrinsic JJs in Bi-2212
high-Tc cuprates, for which the quality factor may exceed
several hundreds [32] and ΔI can be several times larger than
the leakage QP current [9,32].

Discussion
Estimation of parameters
Let us estimate characteristic impedances for the case of
Nb/AlOx/Nb tunnel JJs, which are used in state-of-the-art FFOs
[9,11]. I assume that a = 100 μm, b = 10 μm, d = 2 nm, εr = 10,
d1 = d2 = 100 nm, the zero-temperature London penetration
depth λL0 = 100 nm, Jc0 = 5 × 103 (A/cm2), Ic0 = Jc0ab =
50 mA, and the characteristic voltage Ic0Rn = 1 mV. This yields,
Rn = 20 mΩ, C = 44.25 pF, Λ = 272.6 nm, inductance
L* = μ0Λa/b = 3.43 pH, and c0/c = 2.71 × 10−2.

Surface resistance
Within the two-fluid model, the surface resistance of two super-
conducting electrodes can be written as [41]:

(44)

Here, σn is the normal state conductivity. This approximation is
valid for not very high temperatures, T/Tc < 0.8. Using typical
parameters for sputtered Nb films, σn ≃ 1.75 × 105 (Ω·cm)−1

[42], frequency f = 400 GHz, and T/Tc = 0.5, we obtain:
Rsurf ≃ 0.12 Ω.

Transmission line impedance
The TL impedance is given by Equation 34 where GQP = 1/RQP.
For tunnel JJs, RQP ≫ Rn at sub-gap voltages. I will assume
RQP = 25Rn, typical for Nb tunnel JJs [9,11]. This gives
RQP = 0.5 Ω and GQP = 2 Ω−1. At f = 400 GHz, ωL* = 8.61 Ω,
ωC = 111.2 Ω−1, and ZTL ≃ 0.278 + i0.0015 Ω. It practically
coincides with the resistance of an ideal TL, Equation 35. The

value of ZTL is only slightly affected by an ill-defined QP resis-
tance and remains practically the same even if we use the upper
limit, GQP = 1/Rn. Importantly, ZTL is small because of very
small d.

Dissipative resistance
The effective dissipative resistance is affected by all sources of
dissipation, including QP and dielectric losses in the junction
barrier and surface resistance in electrodes. According to
Equation 37, Rdis is defined via the effective quality factor, Qdis,
which can be written as:

(45)

where QQP, Qsurf and Qdiel are determined by QP, surface, and
dielectric losses, respectively. QP and surface resistance contri-
bution can be accounted for using the TL analysis. The quality
factor of a TL is determined by the relation

where k1 and k2 are real and imaginary parts of the wave num-
ber in the TL, k = k1 − ik2. They are obtained from the TL
dispersion relation,

Taking into account that GQP = 1/RQP ≪ ωC, Rsurf ≪ ωL*, and
, we obtain

(46)

(47)

Dielectric losses in the AlOx barrier of a JJ were estimated in
[43]. At f ≃ 10 GHz, Qdiel ≈ 104. Although it should decrease at
f = 400 GHz, we anticipate that it is still in the range of ca. 103.
Therefore, dielectric losses are negligible, compared to QP and
surface loses. Assuming Qdiel = 500, we obtain, from Equations
45–47, Qdis = 29.48 and Rdis ≃ 0.265 Ω. It is close to the effec-
tive dissipative resistance of the TL,

(48)
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Table 1: Estimation of characteristic resistances (in ohms) for a Nb/AlOx/Nb tunnel junction with sizes a = 100 μm, b = 10 μm, d = 2 nm,
d1 = d2 = 100 nm, Jc0 = 5000 (A/cm2), at T/Tc = 0.5 and f = 400 GHz.

Rn RQP Rsurf RTL ωL* (ωC)−1 Rdis Rrad Rtot

0.02 0.5 0.12 0.28 8.6 0.009 0.265 126.5k 0.265

Radiative and total resistances
From Equation 12 and Equation 8, taking into account the
smallness of c0/c, we can write,

(49)

Substituting λ0 = 750 μm for f = 400 GHz, we obtain a very
large value, Rrad ≃ 126.5 kΩ. Since Rrad ≫ Rdis, the total resis-
tance, Equation 39, is Rtot = 0.265 Ω ≃ Rdis.

Table 1 summarizes characteristic resistances.

Radiation power
From Equation 41, we get the maximum radiation power at the
velocity matching condition, Prad,k ≃ 0.7 nW. It is much smaller
than the total dc power at the velocity matching step, approx.
Φ0fIc0 ≃ 40 μW. The corresponding power efficiency of approx.
10−5 reflects the key problem for using FFO as a free-space
oscillator.

Whom to blame?
The very low radiation power efficiency of a JJ is colloquially
attributed to “impedance mismatch”. However, so far, there was
no clear understanding of what mismatches with what. A long-
living misconception is that the mismatch is between the TL
and free-space impedances, ZTL ≪ Z0 [16]. However, this is not
the source of the poor performance. On the contrary, it is bene-
ficial to have a small TL impedance, connecting two radiating
slots in a patch antenna [36]. The small ZTL does not affect
antenna performance and can be neglected.

The real source of the problem becomes apparent from
Equation 41. It is associated with the more than five orders of
magnitude mismatch between the total and radiative resistances,
Rtot ≪ Rrad, see Table 1. There are two main reasons for the
mismatch: (i) The smallness of the junction width with respect
to the free-space wavelength. The factor (λ0/b)2 in Equation 12
and Equation 49 leads to a very large Rrad ≫ Z0. (ii) The small-
ness of the junction resistance, RQP ≪ Z0. The huge mismatch
indicates that a JJ alone does not work as a free-space oscillator.

What to do?
Accurate matching between radiative and junction resistances is
necessary for efficient emission into free space. Therefore, RQP
should be increased and Rrad decreased to a fraction of Z0.
However, this is not possible for the standard FFO geometry as
sketched in Figure 1a. Indeed, increasing RQP would require the
reduction of junction sizes, which would lead to even faster
increase of Rrad. Alternatively, RQP can be increased by de-
creasing Jc0, but this will not reduce Rrad. Therefore, the imped-
ance matching requires modification of the oscillator geometry.

There are many ways of coupling a Josephson oscillator to free
space. First, I note that biasing electrodes that are attached to
the junction, significantly affect the net impedance. Since the
total length of the electrodes (few millimeters) is larger than λ0,
the electrodes will reduce the net impedance and, thus, improve
impedance matching with free space [17]. Analysis of large JJ
arrays demonstrated that long electrodes may act as a traveling
wave antenna, facilitating a power efficiency of several percent
at f = 0.1–0.2 THz [44,45], which is much better than approx.
10−5 estimated above for the bare junction without electrodes.
In [11], a free-space oscillator based on an FFO, coupled to a
double-slot antenna, was demonstrated. Although the power
efficiency was not specified, a detected off-chip signal up to
55 dB higher than the background noise was reported at
f = 0.5 THz. In [27], a mesa structure containing several
hundreds of stacked Bi2Sr2CaCu2O8+δ intrinsic JJs was imple-
mented in a turnstile antenna. A radiation power efficiency up
to 12% at f ≃ 4 THz was reported. The record high efficiency
was attributed to a good impedance matching with free space
[17]. In [24], a Bi2Sr2CaCu2O8+δ mesa was implemented into a
patch antenna and far-field emission at f = 1.5 THz was re-
ported.

Common for all mentioned approaches is that the junctions,
which are small compared to λ0 and, according to Equation 49,
have poor coupling to free space, are coupled to large passive
elements, comparable with λ0. These elements act as micro-
wave antennas, enabling good impedance matching and
enhancing the power efficiency for emission in free space. The
target parameters for such oscillators are f ≈ 1–10 THz, a high
power-efficiency of approx. 50% and a sufficiently high off-
cryostat power above 1 mW.
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Josephson patch oscillator
Since in this work I consider patch antennas, below I will dwell
on the patch antenna approach, discussed by Ono and
co-workers [24]. Figure 4 shows a design of a Josephson patch
oscillator (JPO). Here, small junctions (red) are acting as an ex-
citation source for a superconducting patch antenna. The bottom
junction electrode (blue) forms the ground plane, and the top
electrode (cyan) creates the patch antenna with sizes (a, b),
comparable to λ0. In principle, the JPO can be driven by a
single JJ. However, as follows from the estimation above (see
Table 1), raising the junction resistance to the desired Z0 level
would require a drastic (100 times) reduction of the junction
area. This will also lead to a proportional reduction of Ic0 and
the net available power. Therefore, a better strategy is to use a
stack of JJs with large-enough area, enabling high-enough Ic0.
The number of JJs, N, is an additional controllable parameter,
allowing for fine-tuning of Rn and Rtot. Furthermore, in-phase
synchronization of N JJs would provide the N-fold increment of
the oscillating voltage v(0,L), leading to a superradiant amplifi-
cation of the emission power, Prad ∝ N2 [10].

Figure 4: A proposed design of the impedance-matched free-space
Josephson oscillator. Here, a small stack of Josephson junctions (red)
is sandwiched between two large superconducting electrodes, namely
the ground plane (blue) and the top electrode (light blue). The stack is
acting as a source of microwave current (feed-in) for the patch antenna
formed by the electrodes.

Moderate-size (approx. 10 μm) Bi2Sr2CaCu2O8+δ mesa struc-
tures are optimal for JPOs. The Rn of such mesas can be easily
raised to several hundred ohms, while maintaining Ic0 of
a few milliamperes. This facilitates the optimal net power level
≈I2Rn of several milliwatts [24,27]. It is small enough for obvia-
tion of catastrophic self-heating, which is one of the major
limiting factors for superconducting devices [17,27]. Simulta-
neously, it is large enough to enable emission above 1 mW, pro-
vided the radiation power efficiency is close to the optimal
approx. 50%.

The operation frequency should be aligned with the Josephson
frequency at the characteristics voltage, Ic0Rn, of JJs. For opera-
tion at the primary  mode, one side of the patch should
be a ≃ λ/2, where λ = λ0/  is the wavelength inside the patch

and εr is the relative dielectric permittivity of the insulation
layer between the patch electrodes. The other size, b, is adjust-
able and strongly affects the patch antenna performance. For
b ≪ λ0, the radiative conductance per slot is given by
Equation 5. In the opposite limit, it becomes [36]

(50)

One of the most important parameters of the emitting antenna is
the directivity, D, of the radiation pattern. A rectangular patch
at the  mode has the main lobe directed perpendicular to
the patch (in the z-axis direction) with [36]

A good free-space emitter should have a value for D as large as
possible. From this point of view, it is preferable to have fairly
wide antennas b ∼ λ0.

Finally, the position (x, y) of the stack plays an important role in
the selection of the excited cavity mode. To excite solely the

 mode, the stack should be placed at x close to one of the
radiating slots, that is, x ∼ a and y = b/2. The position x of the
stack affects the effective input resistance of the antenna and
provides another adjustable parameter for patch antenna opera-
tion, along with the shape of the top electrode [35,36,46]. The
FFO input resistance, Equation 33, is not relevant for JPOs,
because it describes coupling to an internal cavity mode within
the JJ. In JPOs, the Josephson current is coupled to an external
cavity mode in the patch. Since the patch is much larger than
the JJ, the feed-in of the JPO is not distributed (in contrast to a
FFO). Consequently, there is no need for a magnetic field. The
best coupling occurs at H = 0, corresponding to the homoge-
neous distribution of the Josephson current. Generally, opera-
tion of JPOs is described by the standard patch antenna theory
[36]. The only interesting physics is associated with synchro-
nization of JJs in the stack [10], which can be forced by the
high-quality cavity mode in the antenna [47].

Conclusion
I described a distributed, active patch antenna model of a
Josephson oscillator. It expands the standard transmission line
model of a patch antenna, taking into account the spatial-
temporal distribution of the input Josephson current density in a
Josephson junction. In the presence of a magnetic field and
fluxons, the distribution of the oscillatory component of current
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Table 2: Definition of variables.

Variable Definition Properties

a, b junction length and width in (x, y) plane a ≫ λJ, b ∼ λJ
α quasiparticle damping factor α = 1/ωpRQPC = 1/QQP(ωp)
C junction capacitance C = ε0εrab/d
c0 Swihart velocity

d, d1,2 thicknesses of JJ interlayer and the two electrodes d ≪ b ≪ a
Φ flux in the junction Φ = HyΛ*a
Φ0 flux quantum Φ0 = h/2e
Jc0, Ic0 maximum critical current density and critical current Ic0 = Jc0ab
k field-induced phase gradient k = 2πΦ/Φ0a
kn wave number of a cavity mode kn = (π/a)n
L*, L□ inductance of JJ and inductance per square L* = μ0Λa/b, L□ = μ0Λ
λL1,2 London penetration depths of the two JJ electrodes –
λ0 wavelength in free space –
λ wavelength in the patch antenna λ = λ0/
λJ Josephson penetration depth λJ = [Φ0/2πμ0Jc0Λ]1/2 = c0/ωp
Λ characteristic length associated with JJ inductance Λ = d + λL1coth(d1/λL1) + λL2coth(d2/λL2)
Λ* effective magnetic thickness of the JJ Λ* = d + λL1tanh(d1/2λL1) + λL2tanh(d2/2λL2)
η Josephson phase difference –
ωp Josephson plasma frequency ωp = [2πIc0/Φ0C]1/2

ωJ angular Josephson frequency ωJ = ∂η/∂t = 2πVdc/Φ0
ωn cavity mode angular frequency ωn = c0kn
RQP, (rQP) subgap quasiparticle resistance, (per unit area) rQP = RQPab
Rdis net dissipative resistance –
Rsurf surface resistance of electrodes –
Rn normal state resistance of the JJ –
RTL transmission line resistance –
Rrad radiative resistance –
Rin effective input resistance of the JJ –
Rtot total load resistance of the JJ –

is nonuniform. This nonuniformity is essential for operation of a
Josephson flux-flow oscillator and determines the effective
input resistance, which enables the coupling between the
Josephson current and the cavity modes in the junction. The
presented model allows for the explicit application of many
patch antenna results and facilitates full characterization of the
device, including emission power, directivity, and power effi-
ciency. The model explains the low power efficiency for emis-
sion in free space. It is primarily caused by the smallness of the
junction width compared to the free-space wavelength and the
corresponding mismatch between very large radiative and small
junction resistances. The model clarifies which parameters can
be changed to improve FFO characteristics. Finally, I discussed
the design of a Josephson patch oscillator that can reach high
power for emission in free space with the optimal power effi-
ciency of approx. 50%.

Appendix
Definition of variables (Table 2).
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